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THE BALK STOPS HERE: STANDARDS FOR THE 
JUSTICIABILITY OF GERRYMANDERING IN THE COMING 

AGE OF ARTIFICIAL INTELLIGENCE 

DOUGLAS RUDEEN 

ABSTRACT 

At the time of this writing, the Supreme Court seems to have 
abandoned establishing an objective test for drawing nonpartisan 
districts altogether—leaving this task largely to state-level courts and 
legislatures in the aftermath of Rucho v. Common Cause.1 Many have 
seen this deferment to the states as the latest in a series of  
unsatisfactory ‘balks,’ and have openly wondered what redistricting 
laws will look like in the next several years as a result of the Court’s 
general refusal to intervene in this area outside of Voting Rights Act2 
litigation. 
This paper will argue that there is at least one foreseeable outcome—
that (in the absence of mathematically rigorous legal standards for 
gerrymandering) state-level redistricting processes will be left 
vulnerable to abuse through the use of sophisticated artificial 
intelligence platforms.  
To make this argument, the paper will first provide a brief and 
beginner-friendly primer on the basics of AI and machine learning. 
Then it will detail how AI is uniquely suited to perpetrate gerrymanders 
in ways that computer systems would not have been able to during the 
2010 redistricting cycle. Finally, it will conclude with a policy 
recommendation—that the only reliable way to forestall 
gerrymandering in the age of AI is to employ a form of fully-automatic 
redistricting, or a novel semi-automatic redistricting process I will call 
the “Rawlsian Default.” 
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I. INTRODUCTION 

The law of gerrymandering has always been untidy, and nothing in recent 
years has changed this fact very much. In cases of partisan, racial, and other kinds 
of gerrymandering, determining what the applicable law is—and even whether a 
legal violation has occurred—is daunting. 

In the case of partisan gerrymandering the Supreme Court’s recent decisions 
in Gill v. Whitford3 and Rucho v. Common Cause4 have not been universally received 
as a satisfying end to years of costly fights. Some commentators had hoped that 
Justice Kennedy’s concurrence in 2004’s Vieth v. Jubelirer5 had opened the door to 
the possibility of a quantitative outer limit on partisan gerrymandering.6 However, 
with Kennedy’s retirement and the Rucho decision, it seems unlikely this dream will 
be realized anytime soon.  

 With respect to racial gerrymandering, the Court’s efforts in cases like Shelby 
County v. Holder7 and Cooper v. Harris8 seem to have also made application of the 
Voting Rights Act in this space more inexact. Moreover, racial and partisan 
gerrymanders have become increasingly difficult to tease apart as Americans “self-
sort,” adding new confusion to an already tenuous distinction.9 

While criticisms of these outcomes are many and various, this paper will 
discuss one criticism that I believe has gone underrecognized. Namely, the ease 
with which new, inexpensive AI platforms can be used to affect gerrymandering—
even as more stringent legal requirements are placed on the redistricting process. 

To illustrate this, the paper will engage in a rudimentary (and as 
mathematically uninvolved as possible) discussion of how AI and machine learning 
platforms operate. The objective is to give readers with little or no experience 
working with or studying AI a crash course in what it actually does. Next, the paper 
will explore areas of vulnerability in the redistricting process that AI platforms are 
uniquely capable of exploiting. Finally, the paper will suggest a form of semi-
automated redistricting that could help abate AI’s undemocratic influence; a novel 
redistricting schema called the “Rawlsian Default.” 

 
3.  138 S. Ct. 1916 (2018). 
4.  139 S. Ct. 2484 (2019). 
5.  541 U.S. 267, 306–17 (2004) (Kennedy, J., concurring). 
6.  Nicholas Stephanopoulos & Eric McGhee, Partisan Gerrymandering and the Efficiency Gap, 

82 U. CHI. L. REV. 831 (2015). 
7.  570 U.S. 529 (2013). 
8.  137 S. Ct. 1455 (2017). 
9.  See Jowei Chen & Johnathan Rodden, Unintentional Gerrymandering: Political Geography 

and Electoral Bias in Legislatures, 8 Q.J. POL. SCI. 239 (2013).  
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II. A LOW-MATH PRIMER ON AI 

In order to predict how the prevalence of AI will affect gerrymandering, it is 
first necessary to broadly describe how AI works.  Contrary to some popular belief 
– AI is nothing magical, it is simply a series of refined statistical calculations. I 
contend that by understanding these calculations (even at a very rudimentary 
level), it becomes possible to make better predictions about what sophisticated AI 
can do. 

 AI, generally, refers to any computer system that “imitate[s] intelligent 
behavior.”10 More specifically, AIs are computer systems that superficially resemble 
the functional properties of neurons in humans and animals, and that allow 
computers to engage in certain tasks that would be inefficient or impossible using 
other kinds of computer algorithms.11 Ultimately, this process permits computers 
to engage in two problem-solving tasks that are especially germane to a discussion 
of gerrymandering. Namely, these two tasks are sophisticated pattern recognition 
and the optimization of heuristic algorithms.12 

A. Artificial Neural Nets 

The conceptual heart of modern AI is the Artificial Neural Net (ANN, 
hereinafter) and its utility for “supervised machine learning.”13 wherein the neural 
net is trained to recognize new data based on training data.  This process (in some 
ways) simulates the neurons and synapses that characterize the nervous systems 
of most animals (see figure 1).14   

 
10.  See Artificial Intelligence, MERRIAM-WEBSTER, https://www.merriam-

webster.com/dictionary/artificial%20intelligence (last visited May 22, 2020). This definition is, in the 
view of this author, overbroad—since many machines “simulate intelligent behavior” without actually 
trying to simulate the underlying biological processes that are thought to give animals and humans the 
faculty of “intelligence.”  Compare, for example, a sophisticated automaton that “simulates intelligent 
behavior” via a complicated system of gears and cams but has nothing functionally in common with a 
living thing. 

11.  See, e.g., Hassabis et al., Neuroscience-Inspired Artificial Intelligence, 95 NEURON 245 
(2017). 

12.   See discussion infra Part C.2. for a discussion of what is meant by “heuristic algorithm.”  
13.   See GAVIN EDWARDS, Machine Learning – An Introduction, TOWARDS DATA SCI. (Nov. 18, 2018), 

https://towardsdatascience.com/machine-learning-an-introduction-23b84d51e6d0#ca90. 
Comprehensive coverage of the various applications of machine learning would be a herculean task. 
However, Edwards’ article is a good additional primer on supervised machine learning (including several 
topics not covered in this writing). 

14.   See MICHAEL A. NIELSEN, NEURAL NETWORKS AND DEEP LEARNING (2019), 
http://neuralnetworksanddeeplearning.com/index.html; 3Blue1Brown, But What Is a Neural Network? 
| Deep Learning, Chapter 1, YOUTUBE (Oct. 5, 2017), 
https://www.youtube.com/watch?v=aircAruvnKk&list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-
3pi&index=2&t=0s; 3Blue1Brown, Gradient Descent, How Neural Networks Learn | Deep Learning, 
Chapter 2, YOUTUBE (Oct. 16, 2017), https://www.youtube.com/watch?v=IHZwWFHWa-
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Figure 1 : On the left is a “node” (the circle) and “edges” (the attached lines). Nodes and edges 
like the one pictured above will be used for the remainder of this section to illustrate how 
ANNs operate. At right, see a drawing of a nerve cell as would be seen in the nervous system 
of an animal or human being. Science has shown that the axons/dendrites and somas of a 
nerve cell send electrochemical impulses to one another in a way that may be analogous to 
the way digital signals pass between different edges and nodes in an ANN, respectively.15 

The clearest illustration of how ANNs are employed in pattern recognition 
tasks (and how they operate generally) is probably through a basic description of a 
hypothetical ANN called the “multilayer perceptron.”16 This machine was proposed 
as early as the 1950s and 60s, but only found widespread practical application 
within the last fifteen years.17   

 
w&list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi&index=3&t=0s; 3Blue1Brown, What Is 
Backpropagation Really Doing? | Deep Learning, Chapter 3, YOUTUBE (Nov. 3, 2017), 
https://www.youtube.com/watch?v=Ilg3gGewQ5U&list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-
3pi&index=4&t=0s; 3Blue1Brown, Backpropagation Calculus | Deep Learning, Chapter 4, YOUTUBE (Nov. 
3, 2017), 
https://www.youtube.com/watch?v=tIeHLnjs5U8&list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-
3pi&index=5&t=0s. 

15.   The diagram of the nerve cell is based on an online answer to a problem from Chapter 
Thirty-seven of a Biology textbook published by Chegg.  SYLVIA S. MADER, BIOLOGY ch. 37, prob. 2RC (10th 
ed. 2009); see also We Have Solutions For Your Book! CHEGG, https://www.chegg.com/homework-
help/describe-structure-neuron-give-function-part-mentioned-name-chapter-37-problem-2rc-solution-
9780077274337-exc (last visited May 22, 2020). 

16.  MICHAEL A. NIELSEN, NEURAL NETWORKS AND DEEP LEARNING (2019) at ch. 1. The machine 
described in this section is often referred to as a multilayer perceptron (or “MLP”), but this is a bit of a 
misnomer. Technically a “perceptron” is composed of neurons that only give binary output (zeros or 
ones) while the types of neurons used in a pattern recognition task like the one I’m describing can give 
any output between one and zero, and depend on an activation function—more on that later. See infra 
Figure 5 and Figure 6 and accompanying text. 

17.  Nielsen, and others, point to innovations in “deep learning” technology as the primary 
reason why perceptron-like computer programs have found new life. For detailed descriptions of what 
“deep learning” is and why it has improved the overall efficiency of ANNs, see NIELSEN, supra note 14, at 
ch. 1. 
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Imagine that we would like our machine to recognize single handwritten 
numbers like the eights pictured in figure 2. Because the numbers are non-uniform, 
we need some way to systematically recognize their general characteristics. Then, 
from those characteristics, we need to render some probability that the number is 
any integer between 0 and 9. 

Figure 2: Handwritten number eights at different resolutions. While it is easy for us to 

recognize that these all represent an eight, we might have some trouble with the one in the 

middle.18 

The ANN is uniquely suited to this task. The first stage of the ANN’s operation 
involves breaking up the handwritten number into a grid of pixels, and then 
detecting the relative greyscale of each pixel.19 Each pixel value is then assigned its 
own node so that each node has a value between zero and one (see figure 2).20 In 
figure 3 the input nodes are aligned vertically to form a “layer.” 
 

Figure 3: One of the ambiguous number eights from the earlier figure is placed under a ten-

by-ten grid.  Each pixel in the grid is assigned to one of one-hundred nodes in the input layer 

– which we see vertically aligned and with a break mark in the center to save space. The goal 

is to get the machine to recognize which number is being displayed and cause a corresponding 

 
18.  See NIELSEN, supra note 14, at ch. 1.  
19.  See id. In this example I use “pixel” to mean any one-dimensional square division of an 

image. In the example “100%” is totally black and “0%” is totally white. 
20.  Id. 
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value on the output screen to light up. Increasing the number of input nodes (and therefore 

the relative resolution of the image) can improve the accuracy of the machine.21 

Within the machine body lie a series of so-called “hidden layers” that the input 
layer is connected with (see figure 3).22 Each node in the hidden layers has a series 
of branching edges that connect to every other node in the subsequent layer.23 
After a signal is received from the input layer, it is relayed through the hidden layers 
along the edges until there are only a few nodes remaining.24 

 

 
 

 

Figure 4: The nodes and edges that lie within the machine body in figure 4, above. As digital 

signals pass from node to node along the edges, they are multiplied (and thereby weighted) 

by certain values.25 

Each node within the hidden layers has several values assigned to it: values 
that represent weighted averages of the values relayed to it from all the preceding 
nodes, as well as a “bias,” which is a number subtracted from the weighted average 
of the signals arriving from the preceding nodes (see figure 5).26 

 

 

 
21.  See NIELSEN, supra note 14, at ch. 1. 
22.  See id. 
23.  See id. 
24.  See id.  
25.  See NIELSEN, supra note 14, at ch. 1. 
26.  See id. 
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Figure 5: The values from the previous nodes (x1...3) are multiplied by a series of weights (w1..3) 

before entering the node, where they are processed using an “activation function”—a 

mathematical function that converts all the preceding values into a single number between 

0 and 1, and then outputs that function to every node in the adjacent hidden layer.27 

Inside the node, the weights and the bias value are combined using a 
multiplicative “activation function.”28 The possible output of the activation function 
may vary somewhat depending on our task, but the output always follows some 
kind of curve relative to the value of the combined weights it accepts as input and 
subtracts from a bias versus what it outputs (see figure 6).29 

 

 

Figure 6: Graphs of several possible output functions of nodes.30 They include a step function 

(left), a sigmoid or logistic function (center) and a logarithmic function (right).31 Depending 

on the combined value of the weights and bias (the x-axis), the ultimate output of the nodes 

(the y-axis) will fall at some point along whichever function curve we think is best suited for 

our task – outputting a number between one and zero.32 

The original grayscale values from the image are multiplied by the weights and 
biases of each node until there are only a few values remaining.33 In our case, we 
want these remaining values to correspond with percentage likelihoods that the 
handwritten image is a particular number; then have the appropriate number 
display on the output screen (see figure 3, supra).  If the weights, biases, and 
activation functions are properly calibrated, the ANN will be capable of 
“recognizing” handwritten numbers within a certain margin of error. 

 
27.  See id. 
28.  See id. 
29.  See id. 
30.  See NIELSEN, supra note 14, at ch. 1. 
31.  Id. 
32.  Id. 
33.  Id. 
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B. Gradient Descent and Optimization Algorithms 

Clearly, for the ANN to recognize numbers correctly, it is necessary for the 
weights, biases, and output functions associated with each node to be highly 
refined. However, trying to “dial in” the weights and biases of each node on an ad 
hoc basis until accuracy results for all ten numbers (zero through nine) would be 
incredibly inefficient. Fortunately, several optimization algorithms exist to 
automatically make these adjustments.34  “Gradient Descent”35 is likely the most 
straightforward of these algorithms. 

Gradient Descent involves several steps. First, it quantifies the extent to which 
the ANN is failing to make accurate identifications from the training data by way of 
a linear model (illustrated in figure 7, left by a correlation graph) that compares the 
ANN’s guesses (x) relative to an accurate result (y).36  Next, the algorithm iterates 
through possible slopes and y-intercepts to identify a line of best fit in that 
correlation graph.37 Some y-intercept and some slope provide the least error-prone 
(or least “costly”) line of best fit – the point at which the ANN is least likely to make 
an error.38  

An efficient way to find this optimal y-intercept and slope involves graphing a 
curved line on a plane that has possible y-intercepts as its x-axis, and the relative 
error rate as its y-axis (see figure 7, right).39  As the line of best fit becomes more 
accurate, the error rate decreases along the curve (in figure 7, right). By iterating 
through a series of derivatives taken along this line, the algorithm approaches a 
minimum point along the curve, representing the y-intercept of the line of best fit.40   

Finding this line of best fit is significant – it means we have also located the 
“least costly” model for identifying the data in our training dataset.41 We can be 
assured that the weights and biases of our ANN – when they are attenuated to the 

 
34.  See generally AURÉLIEN GÉRON, HANDS-ON MACHINE LEARNING WITH SCIKIT-LEARN AND 

TENSORFLOW: CONCEPTS, TOOLS, AND TECHNIQUES TO BUILD INTELLIGENT SYSTEMS 297 (2017) for several 
examples. 

35.  For the remainder of this section I will be using “Gradient Descent” as shorthand for “Batch 
Gradient Descent” – probably the most accessible and illustratively valuable machine learning algorithm. 

36.  GÉRON, supra note 34, at 110–111, 113. See also 3Blue1Brown, Gradient Descent, How 
Neural Networks Learn | Deep Learning, Chapter 2, YOUTUBE (Oct. 16, 2017), 
https://www.youtube.com/watch?v=IHZwWFHWa-w&list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-
3pi&index=3&t=0s. 

37.  GÉRON, supra note 34, at 113–116. In order to keep this section relatively free of pure 
mathematical explanation, I have omitted the formal equation for the gradient descent algorithm. 
However, for readers who would like to study the algorithm in greater detail, I recommend Michael A. 
Nielsen’s Neural Network and Deep Learning and 3Blue1Brown’s video, “What is Backpropagation Really 
Doing? | Deep Learning, Chapter 3.” NIELSEN, supra note 14; 
http://neuralnetworksanddeeplearning.com/index.html; 3Blue1Brown, What is Backpropagation Really 
Doing? – Deep Learning, Chapter 3, YOUTUBE (Nov. 3, 2017), 
https://www.youtube.com/watch?v=Ilg3gGewQ5U&list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-
3pi&index=4&t=0s. 

38.  GÉRON, supra note 34, at 113–116 
39.  Id. 
40.  The slope of the line of best fit can also be determined this way by adding additional 

dimensions to the graph of the curve. See id.; see also StatQuest with Josh Starmer, Gradient Descent, 
Step-by-Step, YOUTUBE (Feb 5, 2019), https://www.youtube.com/watch?v=sDv4f4s2SB8.  

41.  GÉRON, supra note 34, at 113–116 
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point returning the line of best fit - are likely optimized for recognizing new data 
relative to the training data we have already provided it.42   
 

 

Figure 7: Graphs showing examples of two functions essential to gradient descent.43  On the 

right is graph guesses an ANN might make about the value of y relative to x, with a line of 

best fit (dashed) showing where accurate guesses would fall with respect to a set of training 

data. A single error bar (thick black line, left) indicates how far off a particular guess was from 

the training data. The graph on the right shows a possible curve resulting from plotting the 

sum of the squared error bars from the chart on the left at different y-intercepts for the line 

of best fit. The minimum point on this curve represents the most accurate guesses that the 

machine can make about the y-intercept. Derivatives are shown at right using dashed lines.44 

Gradient descent is – as noted above – just one example of an optimization 
algorithm, and several others exist that are more efficient, powerful, or well-suited 
for other applications of machine learning besides supervised learning.45   

C. Other Topics in Machine Learning 

Virtualized versions of ANNs conceptually similar to the multilayer perceptron 
described above can be scaled up and modified in a variety of ways, allowing them 
to engage in very complex pattern recognition tasks.46 Just as the machine 
described above can detect ambiguous numerical shapes with a high degree of 
accuracy, more complicated AIs (consisting of more nodes, edges, and hidden 
layers, and employing more-sophisticated optimization functions) are capable of 

 
42.  See id.; see also StatQuest, supra note 40.  
43.  Images above are my own, primarily based on examples in StatQuest, supra note 40, and 

3Blue1Brown, Gradient Descent, How Neural Networks Learn | Deep Learning, Chapter 2, YOUTUBE (Oct. 
16, 2017), https://www.youtube.com/watch?v=IHZwWFHWa-
w&list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi&index=3&t=0s. 

44.  See id. 
45.  See GÉRON, supra note 34 .  
46.  See GÉRON, supra note 34, at xiii, 523–531. 
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recognizing patterns in our movie preferences, photos, purchasing habits, and even 
(topically enough) our voting behavior.47  

Many of these more-complex functions require significantly altered 
applications of the sort of processes described previously.48  This section will briefly 
describe two of these concepts, particularly unsupervised learning and the 
optimization of heuristic algorithms. In later sections, the importance of these 
concepts with respect to gerrymandering will be explored further. 

i. Unsupervised Learning 

There are certain situations where the use of large sets of training data (like 
the pairs of handwritten and digital numbers in the example in Sections II.A) are 
either impractical or undesirable.49  In these situations, other forms of machine 
learning are employed.  One common form is “unsupervised learning,” which does 
not require training data at all.50 

In unsupervised learning, a computer is only given a raw dataset and is 
charged with recognizing patterns within those data based just on the data itself 
(i.e., no training data is involved).51  The typical example of this is a process called 
“clustering,” wherein a computer organizes data around sets of common traits that 
it determines reduce the data’s complexity or dimensionality.52    

For example, it may be helpful to visualize unsupervised learning as a process 
that asks a machine to cluster together handwritten numbers relative to their 
similarity to one another, instead of associating them together based on what the 
number should look like depending on training data.53 So, in addition to grouping 
together handwritten digits that look like eights—the computer might also place 
groups of sixes and nines near the eights.54 This, because the computer would 
observe that all three numbers resemble two stacked closed loops (i.e. six looks like 
an eight with a broken upper loop and nine resembles an eight with a broken lower 
loop).55 

This form of learning is particularly useful in situations where we want to try 
and detect new and novel patterns and where preconception about what the 
computer should be looking out for can actually hinder the ability to recognize new 
patterns.56  Medical diagnostics are a ready example.57  An unsupervised clustering 
process of patients with a particular disease based on many hundreds of different 
criteria could potentially reveal underlying risk factors.58  

 
47.  See id.; see also MATT JONES, Should Forecasters turn to Artificial Intelligence to Predict the 

US Election?, NS TECH, (Nov. 7, 2016), https://tech.newstatesman.com/big-data/forecasters-turn-
artificial-intelligence-predict-us-election.  

48.  See supra Sections II(A)–II(B). 
49.  See, e.g., Edwards, supra note 13. 
50.  See, e.g., Edwards, supra note 13. 
51.  See, e.g., id. 
52.  See id. 
53.  See id. 
54.  See id. 
55.  See id. 
56.  See Edwards, supra note 13. 
57.  See id. 
58.  See id. 
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ii. Heuristic Algorithms 

Another use of AI technology is the optimization of heuristic algorithms.59 A 
“heuristic” can be generally described as a decision-making shortcut.60 If, for 
example, someone is having a difficult time choosing between watching TV and 
exercising, they may weigh the relative merits of both and decide which one is a 
better use of their time. Since this person cannot consider every possible 
contingency that might make one activity better than the other, they might rely on 
some kind of general principle that produces reliable results (e.g., looking at the 
weather forecast). While using this general principle may not be optimal or perfect, 
it is good enough to be relied upon—this is a heuristic. 

In mathematics and computer science,61 an analogous situation arises in 
situations where quickly finding an optimal or “best possible” solution is 
exceedingly complex, or impossible.62 In these situations, certain algorithms exist 
to find solutions that—while potentially sub-optimal—are good enough to be very 
useful. 

A classic example is the travelling salesman problem. This problem asks us to 
imagine a door-to-door salesman who must pick the shortest direct path between 
a scattered array of locations.63 While this problem is easy to solve for limited 
numbers of points, the more points on a map the salesman must visit, the more 
complex the problem becomes.64 It becomes so complex, in fact, that it appears to 
become incalculably hard, even for the fastest computers.65   

AIs can be useful in this context because they can learn to dynamically ignore 
certain proposed solutions to the problem that would be a waste of time to test.66 
This, as opposed to some traditional computer algorithms that would have to 
iterate through nearly every possible solution before arriving at an acceptable 
one.67  

 
59.  See Micah Altman, The Computational Complexity of Automated Redistricting: Is 

Automation the Answer?, 23 RUTGERS COMPUTER & TECH. L.J. 81, 90 (1997). Heuristic algorithms, as a 
general matter, are particularly germane to a discussion of the mathematics of gerrymandering. Id. at 
90–91, 123–126. 

60.  James Chen and Roger Wohlner, Heuristics, INVESTOPEDIA (Jul 31, 2020), 
https://www.investopedia.com/terms/h/heuristics.asp.  

61.  Particularly many of the mathematical problems that tend to arise in the context of 
gerrymandering. See Altman, supra note 59, at 90–91.  

62.  Particularly the class of problems described as NP-Complete or NP-Hard. See Micah Altman 
& Michael McDonald, The Promise and Perils of Computers in Redistricting, 5 DUKE J. CONST. L. & PUB. POL. 
69, 81 (2010).  

63.  See Suzanne Ma, Understanding the Travelling Salesman Problem (TSP), ROUTIFIC (Jan. 2, 
2020), https://blog.routific.com/travelling-salesman-problem.  

64.  See id. 
65.  See Altman, supra note 59 (citing Ronald V. Book, Relativizations of the P=? NP and Other 

Problems: Developments in Structural Complexity Theory, SIAM Review 36(2), 157, 159–60 (1994)). 
66.  See Altman, supra note 59, at 90–95. 
67.  See id. 
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III. NOWHERE TO HIDE—THE VULNERABILITY OF THE CURRENT LEGAL FRAMEWORK 

Understanding AI, in a broad conceptual sense, may have some general utility 
for any policymaker or jurist, especially as it becomes more common. But what does 
it amount to in the context of gerrymandering? Why should the various functions 
of AI described in the previous section especially matter to policymakers charged 
with drawing electoral maps? In this section, I will explore several reasons why AI 
should be of extreme interest to mapmakers, courts, and other stakeholders in the 
redistricting process, given some of its unique capabilities. 

First, this section will explore two primary ways that malevolent AIs could 
affect the map drawing process directly. These include a) optimizing the creation of 
maps that—while technically compliant with existing legal standards—are still 
heavily gerrymandered; and b) through training superficially unbiased AIs with 
biased datasets.  Second, this section will explore some of the secondary or indirect 
ways in which AI might be put to use to attack the redistricting process. 

Before proceeding, it is worth mentioning that I take for granted three 
premises in this section: 

1) That without quantitative definition, any given standard for 
limiting gerrymandering (e.g., requirements of compactness, 
contiguity, and even the “equal population” standard) can be 
applied in more than one way.68 

2) If none of the standards are truly mutually exclusive, then 
combinations of these different factors into multi-factor legal tests 
can also be applied in multiple ways.69 

3) Some subset of these various applications can serve different 
political goals. I.e. defining ephemeral criteria like 
“competitiveness” one way may serve one political goal, while 
defining it another way may serve another.   

If these background facts are taken as true, I will argue that it is reasonable to 
expect certain AI platforms, either during the coming cycle of redistricting in 2020, 
or at most the upcoming cycle in 2030, will capably exploit the existing set of anti-
gerrymandering laws to serve differing political goals – thereby appreciably 
distorting voter preference.70  In this section, I will briefly overview the current legal 

 
68.  I will refer to standards capable of various application as “ambiguous” for the remainder 

of the section. 
69.  As a corollary to this statement, it should be noted that having one prong of an anti-

gerrymandering test be quantitative is still an insufficient guarantor of consistent application when the 
other parts of the test are not. For example, Arizona’s redistricting laws between 2000 and 2010 seemed 
to include a general proviso that “compactness” was to be defined according to the “Polsby-Popper” 
test for compactness – a rigorous quantitative definition.  However, this seemed to have been treated 
as a guideline rather than a stringent requirement, and was not the ultimate determiner of compactness. 
See Justin Levitt, All About Redistricting, LOY. L. SCH., https://redistricting.lls.edu/states-AZ.php#criteria 
(last visited May 22, 2020); for the original Polsby-Popper test, see Daniel D. Polsby & Robert D. Popper, 
The Third Criterion: Compactness as a Procedural Safeguard Against Partisan Gerrymandering, 9 YALE L. 
& POL’Y REV. 301 (2015). 

70.  This should be broadly interpreted to include provisions of Federal statutory law directed 
at preventing racial gerrymandering, e.g. Voting Rights Act, 52 U.S.C. §§ 10301, 10304 (1965). 
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standards and their shared vulnerabilities, and will discuss “direct distortion” and 
“secondary distortion,” two broad means by which AI could exploit these legal 
vulnerabilities. 

A. The Current Legal Standards 

The existing set of redistricting laws in the United States have a long history 
of untidiness.71 Very early in the nation’s history there is evidence that the political 
branches were struggling with how to create geographic partitions of the several 
states to achieve fair representation, and whether or not this was an improvement 
over at-large elections.72 Constitutional guidance on partisan gerrymandering is 
scant,73 and federal interventions in the area—including the “one-person one vote” 
standard and post-incorporation interpretation of the 14th Amendment equal 
protection clause—have done little to set categorical prohibitions on the practice.74 
Racial gerrymandering has been more clearly prohibited. The Voting Rights Act 
(VRA) and associated cases have made it clear that the government does have a 
compelling interest in preventing this practice.75 However, guidance on how exactly 
the VRA is to be applied in many situations is also murky.76 

Presently, the practice of partisan gerrymandering is largely controlled by 
state law as a result of Rucho v. Common Cause.77 State-level gerrymandering rules, 
in turn, typically employ some combination of the following five factors: 

 
71.  See generally ELMER CUMMINGS GRIFFITH, THE RISE AND DEVELOPMENT OF THE GERRYMANDER 

(Kessinger Legacy Reprints, 2010) (1907); ERIK J. ENGSTROM, PARTISAN GERRYMANDERING AND THE 

CONSTRUCTION OF AMERICAN DEMOCRACY, 16, 23–27 (2013). 
72.  See ENGSTROM, supra note 71, at 21–22.; see also Vieth v. Jubelirer, 541 U.S. 267, 304 

(2004). Interestingly, several states attempted to avoid this issue outright by holding at-large elections 
prior to the Decennial Apportionment Act of 1842. See generally ENGSTROM, supra note 71. 

73.  See U.S. CONST. art. I, § 5; see generally ENGSTROM, supra note 71, at 22. 
74.  See generally U.S. CONST. art. I, § 5; Bryan H. Wildenthal, The Lost Compromise, 61 OHIO ST. 

L. J. 1051 (2000); see also Gitlow v. New York, 268 U.S. 652 (1925); Chicago B. & Q. R.R. Co. v. City of 
Chicago, 166 U.S. 226 (1897), seminal incorporation doctrine cases.  

75.  See Voting Rights Act, 52 U.S.C. §§ 10301, 10304 (1965); Cooper v. Harris, 137 S. Ct. 1455 
(2017); Thornburg v. Gingles, 478 U.S. 30 (1986). 

76.  For a case study in the troubled application of Sections 2 and 5 of the VRA, see Galen Druke, 
Is Gerrymandering the Best Way to Make Sure Black Voters Are Represented?, FIVETHIRTYEIGHT (Dec. 14, 
2017, 3:24 PM), https://fivethirtyeight.com/features/is-gerrymandering-the-best-way-to-make-sure-
black-voters-are-represented/; see also a discussion of the application of the Gingles factors in Cooper, 
137 S. Ct. 1455; see generally Shelby Cty. v. Holder, No. 10-0651(JDB), 2013 WL 10509740 (D.D.C. Oct. 
11, 2013) (creating a general lack of clarity for states on the application of Section 5 of the VRA). 

77.  Rucho v. Common Cause, 139 S. Ct. 2484 (2019). The requirement that districts have 
relatively equal populations is still Constitutionally controlled by Article I, section 5, but the stringency 
of this requirement varies between congressional districts and state and state and local legislative 
districts. See Justin Levitt, Where are the Lines Drawn?, LOY. L. SCH., http://redistricting.lls.edu/where-
state.php#compactness. 
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1) Compactness; 
2) Contiguity; 
3) Competitiveness; 
4) Preservation of Communities of Interest;  
5) Preservation of Existing Political Boundaries;78 

Beyond these factors, certain jurisdictions are still charged with the creation 
of majority-minority districts pursuant to Section 2 of the VRA.79 Certain states have 
also taken it upon themselves to create additional rules directed towards ensuring 
electoral fairness.80 

 Detailed discussion of what each of these factors can potentially entail has 
been treated in significant depth by other authors.81 For our purposes, it is enough 
to note that each standard is relatively ambiguous. For instance, whether 
“compactness” is purely a function of geography, or a function of residents’ mean 
distance from a given centroid is debatable, and both have been proposed to 
measure this concept.82 Contiguity is another example. It should ostensibly be easy 
to measure—it probably ought to mean that the district is not divided into 
disjointed islands. But are districts that are strung together with parcels of land 
where no one resides “contiguous”? If true, is there a way of quantifying how 
densely populated each portion of a district must be for it to be considered part of 
a contiguous district? For each of the standards itemized above, questions like 
these abound.83 

B. Direct Distortion 

“Direct distortion” is a term I will use to describe a process wherein an ANN is 
directly programmed to create maps that comply (within an acceptable margin of 
error) with sets of ambiguous legal standards, but still affect gerrymanders. 
Ironically, as policymakers layer factor upon factor in the interest of trying to stop 
gerrymandering, they are likely doing just the opposite—creating a safe haven for 
malevolent AIs to work unnoticed. 

Imagine, for example, that we wanted to draw a map that was “compact” but 
lacked an unambiguous standard for compactness. An AI could be designed to use 
different segments of an ANN to test multiple different accounts of what 
“compactness” means. The AI could efficiently test a series of maps containing 
population data about our subject jurisdiction, and it could theoretically recognize 

 
78.  See e.g. CAL. ELEC. CODE § 21500 (West 2020). 
79.  Voting Rights Act, 52 U.S.C. § 10301 (1965). 
80.  E.g. preventing drawing districts that “unduly” favor a candidate or political party. See, e.g., 

HAW. CTY. CHARTER art. III, § 3–17(f)(1) (2015).  
81.  See Levitt, supra note 77. 
82.  Compare Brian Olson, Redistricter, BITBUCKET.ORG, 

https://bitbucket.org/bodhisnarkva/redistricter/src/default/ (last visited May 22, 2020) (Brian Olson’s 
proposed use of mean distance), with Lukas Svec, Sam Burden, & Aaron Dilley, Applying Voronoi 
Diagrams to the Redistricting Problem, 28 UMAP J. 313 (2007) (proposing use of weighted Voronoi 
diagrams, a geographically based measure of compactness) and Chung-I Chou & S.P. Li, Taming the 
Gerrymander—Statistical Physics Approach to Political Districting Problem, 369 PHYSICA A. 799 (2006) 
(advocating a similar approach). 

83.  See Levitt, supra note 77. 
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maps that were any combination of “geographically compact” and/or “mean-
distance compact.” If our legal distinction is ambiguous, the AI could suggest a 
greater array of possible maps (see figure 8), thereby increasing the likelihood that 
a legally-compliant (in this case “compact”) but gerrymandered map would be 
within the solution set. 

 

 
Figure 8: An abbreviated illustration of a hypothetical ANN with two sections running parallel 

to one another, one that has been trained to recognize geographic compactness in a series 

of legal maps, and one that recognizes mean-distance compactness in a series of legal maps.  

We can see that this creates the equivalent of a logical AND/OR relationship in the table at 

right. Accordingly, the possible number of acceptable maps has increased because of the 

ambiguity of our legal standard.84 

Moreover, it is relatively easy to imagine a situation where the AI described 
above could be programmed to gerrymander by giving additional weight to maps 
that showed a high tendency to swing one way or another along party or racial lines. 
In these situations, the AI could be trained to pick whichever arbitrary definition of 
“compactness” best accomplishes this end.85 

It  is also easy to envision a situation where the kind of unsupervised learning 
described above,86 could be employed to search out latent or discrete statistical 
characteristics among groups of likely voters that would correlate with them voting 
for a particular party, or were suggestive of their belonging to given racial groups. 
Using these characteristics as a proxy for either party affiliation or race would allow 
the AI to engage in a nearly identical process of direct distortion to that described 

 
84.  This image is my own, based on Altman, supra note 59. 
85.  One interesting example of this results when Brian Olsen’s algorithm is used on a map of 

North Carolina. Aaron Bycoffe, Ella Koeze, David Wasserman, & Julie Wolfe, The Atlas Of Redistricting, 
GERRYMANDERING PROJECT (Jan. 25, 2018, 6:00 AM), https://projects.fivethirtyeight.com/redistricting-
maps/north-carolina/. While the algorithm ostensibly lacks intent to engage in racial gerrymandering, 
using it on this map results in remarkably few districts that might be reasonably considered ‘majority-
minority.’ 

86.  See supra Section II.C.1. 
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in the previous paragraph, even if the AI lacked specific data about voters’ party 
registration or race. 

A final form of “direct distortion” would obtain if an AI platform (perhaps one 
that a redistricting commission agrees to use to aide in their mapmaking 
beforehand) were somehow compromised to write biased maps. This is easy to 
conceptualize if we consider how training data can be employed to bias the kinds 
of solutions that an AI recognizes.87 If an otherwise “objective” AI platform or library 
were surreptitiously retrained on a dataset of biased maps, it follows that it would 
begin to render maps exhibiting similar biases itself.  

Ultimately, any of the forms of direct distortion described above, combined 
with AI’s ability to employ heuristic algorithms to quickly refine the number of 
possible maps it can choose from, make it a formidable obstacle to the evenhanded 
application of existing legal standards. 

C. Secondary Distortion 

It is likely that the ability of AI to mimic the speech and writing of natural 
persons—even if imperfect—could make it an important tool for those trying to 
promote gerrymandered maps in bad faith, regardless of whether the maps 
themselves were originally drawn using an AI platform. I will refer to processes like 
this—where an AI is used as a gerrymandering tool in a way that is secondary to the 
actual drawing of maps—as “secondary distortion.” This could be accomplished in 
several ways, but one particularly troubling way is the manufacture of fake 
testimony. 

Several states rely heavily on public testimony as a feature of their 
redistricting processes, particularly if they rely on independent redistricting 
commissions.88 In the early stages of redistricting, these commissions often solicit 
preliminary testimony from citizens regarding how they would like maps to be 
drawn within the states’ legal frameworks.89 In California’s 2010 redistricting cycle, 
for example, citizens were given the chance to email the redistricting commission 
about ways in which they believed they were parts of  “communities of interest” 
such that they should be permitted to vote as a bloc in certain elections.90 During 
the 2010 cycle in Arizona, citizens were allowed to provide some electronic 
feedback to that state’s commission about proposed maps.91    

While soliciting information like this likely allowed the redistricting 
commissions to make well-informed decisions about how the subject maps were 

 
87.  See supra Section II.B. 
88.  See generally Galen Druke, Even A Gerrymandering Ban Can’t Keep Politicians From Trying 

to Shape Their Districts, GERRYMANDERING PROJECT (Jan. 4, 2018, 3:28 PM) [hereinafter Druke, Even A 
Gerrymandering Ban], https://fivethirtyeight.com/features/even-a-gerrymandering-ban-cant-keep-
politicians-from-trying-to-shape-their-districts/ (providing a profile of the redistricting process in 
California); Galen Druke, Want Competitive Elections? So Did Arizona. Then the Screaming Started, 
GERRYMANDERING PROJECT (Dec. 21, 2017, 10:03 AM) [hereinafter Druke, Want Competitive Elections?], 
https://fivethirtyeight.com/features/want-competitive-elections-so-did-arizona-then-the-screaming-
started/ (providing a profile of the redistricting process in Arizona). 

89.  See, e.g., Druke, Even A Gerrymandering Ban, supra note 88; Druke, Want Competitive 
Elections?, supra note 88. 

90.  See Druke, Even A Gerrymandering Ban, supra note 88.  
91.  See Druke, Want Competitive Elections?, supra note 88.  
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ultimately drawn,92 they potentially opened the door for fake testimony favoring or 
disfavoring commission activity or particular maps. Given that fake testimony has 
been present in one form or another in earlier redistricting efforts,93 the use of AI 
to improve the convincingness of those fakes should be heeded with extreme 
caution by redistricting commissions, or by any political body seeking to engage in 
analogous forms of open redistricting.94 

IV. AUTOMATED REDISTRICTING—HAS ITS TIME FINALLY COME? 

One appealing cure for some of the problems described in the previous 
sections is quantifying existing legal standards in such a way that redistricting can 
be fully automated (e.g. by implementing a redistricting statute that was merely a 
restatement of code executed on a computer to generate new maps).95 The idea of 
automated redistricting is hardly new.96 Even before personal computers were 
widely available, commentators still saw value in automation as a means of 
preempting gerrymandering outright.97   

However, despite its superficial intuitiveness, automated redistricting has 
never caught on. Justifications for why it has never caught on abound, but they tend 
to gravitate around three general objections: First, there is a sense in which the 
automation of redistricting would still be an inherently political activity, and that 
any scheme of automated redistricting could mirror the biases of programmers.98 
Second, there is the idea that automating redistricting would remove some 
measure of democratic process from the act of redistricting—and that this is 
normatively undesirable.99 Third, there are criticisms of automated redistricting 

 
92.  This at least seemed to be true in California, where the efficiency gap of the resulting map 

was very low. See Nicholas O. Stephanopoulos, Communities and the California Commission, 23 STAN. L. 
& POL’Y REV. 281, 282 (2012). 

93.  The 2010 Arizona commissioners, at least, observed that many of the emails they received 
contained largely duplicated text, and paid little attention to those emails. Druke, Want Competitive 
Elections?, supra note 91. If AI can generate sufficiently different, natural-sounding testimonial between 
fake emails, accordingly searching for duplicate text would lose reliability. David Daley also recounts an 
interesting example of fake testimonials given in Florida during 2011. DAVID DALEY, RATF**KED: WHY YOUR 

VOTE DOESN’T COUNT 125–127 (2016).  It is also worth noting that map-drawing contests, like the one Ohio 
undertook in 2009, would also be susceptible to this kind of attack. See Altman & McDonald, supra note 
62, at 100 (describing Ohio’s map-drawing contest). 

94.  For a detailed discussion of “open redistricting” and some novel forms it has taken, I 
recommend David Daley’s book “Ratf**cked: Why Your Vote Doesn’t Count.” See generally DAVID DALEY, 
RATF**KED: WHY YOUR VOTE DOESN’T COUNT (2016).  

95.  See Altman & McDonald, supra note 62, at 73, for a discussion of the meaning of “fully 
automated.” 

96.  See Altman, supra note 59, at 83. 
97.  See id. at 84; William Vickrey, On the Prevention of Gerrymandering, 76 POL. SCI. Q. 105, 106 

(1961).  
98.  See Altman, supra note 59, at 84–86. 
99.  Id. 
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that center on the sheer computational complexity of automatically selecting maps, 
even with a highly-refined set of criteria.100 

These criticisms are well taken. However, it seems reasonable to this author 
that automating the redistricting process should be generally revisited by 
policymakers and ultimately implemented. This, if only for the fact that the threats 
posed by AI (at least including the direct distortion and secondary distortion 
described above) may now prove to outweigh whatever inherent democratic 
virtues went hand-in-hand with the traditional redistricting process.  While an 
agreed-upon redistricting algorithm may incidentally show some level of bias – 
there seems to be merit in the assurance that this bias would be predictable, 
measurable, transparent, and identifiable as a product of the algorithm.  This, in 
turn, may allow policymakers to offset the bias in other ways, instead of wondering 
how it arose and basing their corrective actions on incomplete information.  Finally, 
the computational complexity of automated redistricting does seem to be 
manageable if parameters with which to limit it are agreed upon.101 

A. The Rawlsian Default 

My proposed solution to the problem of AI is a process I will call the “Rawlsian 
Default.” This name stems from some existing literature on redistricting,102 which 
posits that one potential advantage of automated redistricting is that it helps create 
a version of the so-called “veil of ignorance”—a thought experiment proposed by 
the philosopher John Rawls.103 Rawls asks us to imagine a situation where 
individuals must choose the rules of a hypothetical society prior to knowing what 
their position within this society will be.104 The supposition is that the actors will 
thereby produce rules that are mutually agreeable to all players.105 Automated 
redistricting, in theory, mimics this by forcing political actors to adopt policy 
positions in ignorance of how their districts could swing relative to those 
positions.106 It thereby tends to maximize responsiveness to voters  - the underlying 
virtue of voters picking their politicians rather than the reverse. 

In the “Rawlsian Default,” the existing rules for redistricting in given 
jurisdictions are left intact. States with independent commissions would be allowed 
to engage in the normal set of hearings and solicitations of public testimony that 
they would engage in during any redistricting year. Once these processes are 
complete and the maps finalized, the first election would proceed as usual. If, 

 
100. See generally Altman, supra note 59. The computational complexity of fully automated 

redistricting is largely a function of the NP-hardness or NP-Completeness of finding “optimal” maps in 
any given jurisdiction. See id. at 91–94, 104–108. I contend that viewing the process as a kind of 
algorithmic “hunt” for an optimal map from a possibly infinite number of possible maps in polynomial 
time is a counterproductive way of thinking about this problem. 

101. See Altman, supra note 59. 
102. See id. at 87–89. 
103. See JOHN RAWLS, A THEORY OF JUSTICE 12, 19 (1971).  
104. Id. at 16–22. 
105. Id. at 117–20. 
106. See Altman, supra note 59, at 87. 
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however, the results of that election returned an efficiency gap in excess of 8%,107 
the Rawlsian Default would kick in, and the jurisdiction would be forced to hold the 
remaining elections in the cycle relative to a map generated through an automated 
process. 

For this automation, I would recommend utilizing a redistricting algorithm 
based on the one proposed by mathematicians Lukas Svec, Sam Burden, and Aaron 
Dilley in 2007.108 First, this algorithm would find areas of population prominence in 
a map of the jurisdiction.109 Then, it would place n centroids within the n-most 
prominent census tracts in the jurisdiction, and draw Voronoi distances relative to 
those centroids.110 Next, the Voronoi distances could be weighted (i.e. 
incrementally expanded or contracted) until equality of population of each district 
was achieved within a certain threshold.  This would at least ensure that forms of 
compactness, contiguity, and equal population were attended to. The Voronoi 
distances may also be Manhattanized, snapped to their respective Chebyshev or 
“chessboard” distances, and/or limited according to existing political boundaries in 
the course of the weighting process for ease of administration. 

Finally, for an added layer of ‘ignorance,’ it could be left up to random chance 
whether the Rawlsian Default algorithm would be seeded relative to areas of 
population prominence, or relative to anti-prominent population valleys. In the 
former, areas of large population like cities are likely to remain intact, while any 
“cracking” would likely occur in suburban or rural areas. In the latter condition, 
cities would likely be cracked and rural areas left in intact voting blocks. This would 
force partisans or other bad-faith actors in the redistricting process to hedge their 
efforts to gerrymander relative to the likelihood that one of these two possible 
outcomes would thwart their purposes completely. Additionally, this process would 
act as a kind of fail-safe against a situation where the efforts of a redistricting 
commission were hijacked by malevolent actors employing sophisticated AIs. 
  

 
107. See Gill v. Whitford, 138 S. Ct. 1916, 1933 (2018), for discussion of a previously proposed 

efficiency gap that would trigger scrutiny. For districts subject to the relevant provisions of the Voting 
Rights Act, racial efficiency gaps—where voters of particular minority groups are found to waste their 
votes at high rates—may be another potential trigger for the Rawlsian default.  

108. Lukas Svec, Sam Burden, & Aaron Dilley, Applying Voronoi Diagrams to the Redistricting 
Problem, 28 UMAP JOURNAL 313 (2007). 

109. Prominence itself can be measured in several ways, but this supposes a mutually agreed 
upon definition of prominence.  

110. See Svec, Burden & Dilley, supra note 108. A Voronoi Distance, in simple terms, involves 
marking at least two points on a plane, and then diving the plane where the points are equidistant. Doing 
this for multiple points creates divisions of the plane that are optimally compact relative to the points. 
For an online tool useful in visualizing Voronoi Diagrams, see the Interactive Voronoi Diagram from Sarah 
Y. Greer’s blog. Sarah Y. Greer, Interactive Voronoi Diagram, SARAH Y. GREER (Oct. 6, 2017), 
http://www.sygreer.com/projects/voronoi/. 
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V. CONCLUSION 

The ultimate effect of AIs on the 2020 redistricting cycle and the cycles after 
that remains anyone’s guess. However, given what we already know about AI, it 
seems reasonable to say that any failure by courts to promulgate clear, quantifiable 
legal standards for gerrymandering is now more ill-advised than ever. AI has created 
(and will continue to create) an unprecedented need for quantitative specificity in 
this area of law. The more that courts, legislatures, and other policymakers balk at 
writing quantitative gerrymandering rules, the more costly and destructive the 
effects of AI have the potential to become. 
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